
MEMOIZED PARSING WITH DERIVATIVES

by

Tobin Yehle

A Senior Honors Thesis Submitted to the Faculty of
The University of Utah

In Partial Fulfillment of the Requirements for the

Honors Degree in Bachelor of Science

in

Computer Science

Approved:

Vivek Srikumar, PhD
Thesis Faculty Supervisor

Ross Whitaker, PhD
Director, School of Computing

Erin Parker, PhD
Honors Faculty Advisor

Sylvia D. Torti, PhD
Dean, Honors College

April 2016
Copyright c© 2016

All Rights Reserved

Abstract

Due to the computational complexity of parsing, constituent parsing is not preferred for

tasks involving large corpora. However, the high similarity between sentences in natural

language suggests that it is not necessary to pay the full computational price for each new

sentence. In this work we present a new parser for phrase structure grammars that takes

advantage of this fact by caching partial parses to reuse on later matching sentences. The

algorithm we present is the first probabilistic extension of the family of derivative parsers

that repeatedly apply the Brzozowski derivative to find a parse tree. We show that the new

algorithm is easily adaptable to natural language parsing – we introduce a folded variant

of the parser that keeps the size of lexical grammars small, thus allowing for efficient

implementations of complex parsing models.

ii

Contents

1 Introduction 1

2 Background and Related Work 3
2.1 Formal Languages and Computation . 3

2.1.1 Regular Languages . 4
2.1.2 Derivatives of Regular Languages 4
2.1.3 Context Free Languages . 6
2.1.4 Parsing Context Free Grammars (CFGs) 7

2.2 Parsing Natural Language . 8
2.2.1 Parsing Algorithms . 8
2.2.2 Lexical Parsing . 10
2.2.3 Collins Model . 10

3 Derivative Parsing with Probabilities 11
3.1 Derivatives of CFGs . 11
3.2 Constructing a Parse Tree . 14
3.3 Probabilities of Derived Productions . 17
3.4 Nullable Paths as Dijkstra’s Algorithm . 17
3.5 Probabilistic Parsing with Derivatives . 22

4 Adapting to Lexicalized Parsing 24
4.1 The Naı̈ve Approach . 24
4.2 Folding the Grammar . 25

4.2.1 Folded Dijkstra’s Algorithm . 26
4.2.2 Changes in Representation . 27

5 Replicating the Collins Model 29
5.1 The Collins Parsing Model . 29
5.2 Encoding Features in Lexical Information 31
5.3 An Efficient Encoding . 31

5.3.1 The Grammar . 32
5.3.2 Fixing the Parse Tree . 33
5.3.3 Results . 36

6 Conclusions 37

iii

CONTENTS iv

A Folded Example 41

Chapter 1

Introduction

Constituent parsing of natural language is notorious for its computational complexity [Ju-

rafsky and Martin, 2009], and this makes it an unattractive choice for processing large

volumes of text. The most popular alternatives today are either to not parse at all, or use

efficient algorithms for dependency parsing. We believe there is no reason parsing needs

to be such a time consuming problem given the availability memory and the high self sim-

ilarity of natural language.

In this work we forego traditional parsing algorithms in favor of the Derivative Parser

with Probabilities (DERP-P). We show that, not only does this algorithm find the most

probable parse, it allows partial computation to be cached. The execution of the algorithm

is naturally broken into self contained steps for each new word of the sentence. This allows

partial parses to be saved, and then reused on future sentences with matching prefixes at

no additional cost. Figure 1.1 shows the log frequency versus the log rank of sentence

prefixes. This graph shows that many sentences have similar prefixes, so many sentences

will be cache hits.

DERP-P is the first extension of derivative based parsers [Brzozowski, 1964] to proba-

bilistic phrase structure grammars. In this work we demonstrate the expressive power of the

algorithm by giving an implementation of the Collins parsing model Collins [1999] backed

1

CHAPTER 1. INTRODUCTION 2

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 1 2 3 4 5 6 7 8 9

Lo
g

 F
re

q
u
e
n
cy

Log Rank

Sentence Prefix Frequency

Figure 1.1: The log frequency of a sentence prefix versus the log of its rank. This was
generated by looking at all prefixes of length less than 10 on a small set of news articles.

by DERP-P instead of the popularly used Cocke Younger Kasami algorithm. We show that

the natural ability to cache partial parses makes DERP-P a good choice when faced with

parsing large data sets.

The setting of the original Derivative Parser [Might et al., 2011] is programming lan-

guages, which have a much smaller grammar than the lexicalized probabilistic grammars

used in natural language. We show how the lexical information can be folded up in order

to keep the implementation fast in this new setting.

To summarize, the contributions of this research are

1. We introduce the first probabilistic extension to the derivative parser (DERP-P) that

is geared towards parsing natural language.

2. DERP-P is guaranteed to find the maximum probability parse tree.

3. DERP-P can be cached without changing its results, allowing us to parse web-scale

corpora.

Chapter 2

Background and Related Work

From a formal standpoint, a language can be viewed as a set of strings over some alphabet,

where every string in the set is a sequence of letters in the alphabet. There are many ways

to define such a set, and the different definitions can describe different classes of language.

The most common question to ask about a language is if it contains a particular string.

When viewing natural language formally it is common to ask what the syntactic structure

of a sentence is. This structure relates the formal definition of the language to a particular

sentence and often provides information that is key to understanding natural language. In

this chapter we will discuss formal languages and parsing in many contexts.

2.1 Formal Languages and Computation

This section describes the theoretical formulation of language, and algorithms for deter-

mining if a string is contained in a language. It closes with a short discussion of parsing

context free languages such as the ones encountered in programming languages.

3

CHAPTER 2. BACKGROUND AND RELATED WORK 4

2.1.1 Regular Languages

Languages are defined as sets of strings. Defining small languages by enumerating all

strings in the language is only possible if the language contains a finite number of strings.

Consider the language containing all strings with zero or more as. Enumerating all strings

in this language is not possible, as the set would be {ε, a, aa, aaa, aaaa, . . . }

and so on. The most simple class of language capable of representing an infinite number

of strings is regular language.

Formally the empty language ∅, the language containing the empty string{ε}, and all

languages containing a single string with a single character are regular. All languages that

are unions, concatenations, or repetitions (Kleene Star) of these basic languages are also

regular [see Hopcroft et al., 2001].

Regular expressions are a notation for regular language that very closely matches this

definition. Repetition is denoted with a *, union with |, and concatenation by adjacency.

An example of a regular language is: the language of all strings of as with a b somewhere

in the middle, which would be notated as a*ba*. The classic question to ask about a

language is containment. For example, the sentence aaaba is in the language a*ba*, but

the sentence aaa is not.

2.1.2 Derivatives of Regular Languages

The derivative of a language was introduced as a tool for answering the classic string con-

tainment question for languages. The derivative is an operation on languages defined by

Brzozowski [1964]. The derivative of a language is taken with respect to a single character

in the alphabet of the language. The operation itself is very simple. Suppose we want to

take the derivative of a language with respect to a character c. For every string in the orig-

inal language, cut off the first letter. If the removed letter is c, then the rest of the string is

in the new language. We use the notation Dc(L) to denote the derivative of a language L

CHAPTER 2. BACKGROUND AND RELATED WORK 5

with respect to a character c. In set builder notation, derivative of a language L is

Dc(L) = {w : cw ∈ L}

where c is the letter the derivative is taken with respect to and cw is a string in L. The

derivative of the language {foo, bar, baz} with respect to the character b would be

{ar, az}. The string foo did not begin with a b, so it was removed. The strings bar and

baz both began with the letter b, so that letter was removed, and the word that remained

was added to the new language.

The derivative of languages provides a natural way to check if a string s = c0c1 . . . cn−1cn

is in a languageL. Asking if s is inL is equivalent to asking if ε is inDcn(Dcn−1(. . . Dc1(Dc0(L)))).

Knowing if ε is in a language is much easier than knowing if an arbitrary string is in a lan-

guage.

Unfortunately the definition of the derivative shown above is for sets of strings. Br-

zozowski [1964] also defines the derivative for regular expressions. The formal definition

is

• Dc(∅) = ∅

• Dc(ε) = ∅

• Dc(c
′) = ε if c = c′ ∅ otherwise

• Dc(A ∪B) = Dc(A) ∪Dc(B)

• Dc(A •B) = (Dc(A) •B) ∪ (δ(A) •Dc(B))

• Dc(A∗) = Dc(A) • A∗

where δ(A) is the nullability function A ∩ {ε}. A regular expression is nullable if the

language it describes contains the empty string. The result of the function δ is either the

empty set, or the set containing only the empty string ε.

CHAPTER 2. BACKGROUND AND RELATED WORK 6

The language we used before, a*ba*, is defined with a regular expression. The defini-

tion of the derivative on regular expressions allows us to check if a string is in the language.

If we wanted to know if the string "aaaba" is in the language we could equivalently ask

if ε is in the language Da(Db(Da(Da(Da(a*ba*))))). Evaluating those derivatives yields

the language a*, and ε is indeed in a*, so "aaaba" is in the original language. Taking

derivatives with respect to the second example string, "aaa", yields a*ba*, which does

not contain the empty string, so "aaa" is not in the original language.

The derivative is a powerful tool for recognizing if a string is in a language that can be

described by a regular expression, but unfortunately natural language is too complicated to

be described by regular expressions.

2.1.3 Context Free Languages

The dominant formalism for representing the syntax of natural language (and programming

languages) is the context free model [Jurafsky and Martin, 2009]. In practice, the language

we speak is not context free [Shieber, 1985], but algorithms for parsing a richer model of

language are not feasible. The context free model is sufficient in most circumstances, so

it is the model of choice. Context free languages are often defined via a CFG. This is the

specification of language used by popular algorithms in compilers.

Formally a CFG is a set of terminal symbols A, a set of non-terminal symbols, N , a

set of rules R, and a start non-terminal symbol n0 ∈ N . Each rule shows how to replace

a single non-terminal symbol with a (possibly empty) list of other symbols, for example

S→ a S b. Every string in the language can be found by applying rules from the grammar

to a string of symbols a number of times, starting with a sequence containing only the start

symbol [Hopcroft et al., 2001].

Notation When writing grammar symbols, bold upper-case letters will always be non-

terminal symbols, and lower-case italicized letters will be terminal symbols. For example

CHAPTER 2. BACKGROUND AND RELATED WORK 7

S is a non-terminal symbol, and a is a terminal symbol. It is also important to note the

difference between the derivative operator, written as Dc(A), and a derived non-terminal

symbol, written Dc[A]. The first denotes a function application, and the second is a regular

non-terminal symbol in a grammar.

A slight modification of CFGs to include probabilities is popular in Natural Language

Processing (NLP), and is known as a Probabilistic Context Free Grammar (PCFG). In

these grammars every rule also has a probability which defines how likely that rule is in

relation to the other rules in the grammar. These probabilities are used to resolve syntactic

ambiguity.

2.1.4 Parsing CFGs

Every sentence in a language defined with a CFG can be produced by a number of expan-

sions using the rules in the grammar. A simple example of a context free language is the

language of a number of ‘a’s followed by the same number of ‘b’s. A representation of

this language as a CFG is

S → a S b

S → ε

This grammar asserts that any string in the language can be built by starting with an S and

replacing that S with either a S b or the empty string ε, until there is no longer an S. For

example the string "aabb" can be found as follows. S → a S b → aa S bb → aabb. An

equivalent way of showing how this string was found from the grammar is with a parse

tree. The parse tree for the string aabb would be

S

bS

bS

ε

a

a

CHAPTER 2. BACKGROUND AND RELATED WORK 8

2.2 Parsing Natural Language

In natural language, there is meaning in the structure of the parse tree of a sentence. Con-

sider the sentence I saw a man with a telescope. The parse tree of that sentence tells you if

you saw a man using a telescope, or if you used a telescope to see a man.

S

VP

NP

PP

with a telescope

NP

a man

saw

NP

I

S

VP

PP

with a telescope

NP

a man

saw

NP

I

This is why parsing is so important for understanding the meaning of an English sen-

tence.

When parsing a programming language the definition of the language is one of the

inputs to the algorithm. This language definition is designed by the creator of the language,

but for natural language there is no standard grammar, instead a grammar is learned from

a large set of example parse trees. The rules and probabilities of the grammar is inferred

from these trees. In English, parsing has been driven by the Penn Treebank data-set [Marcus

et al., 1993].

2.2.1 Parsing Algorithms

Of the algorithms available for parsing the most common in NLP is the Cocke Younger

Kasami algorithm (CYK) because it is bottom up and can handle any CFG. Another algo-

rithm that is sometimes used is the Earley algorithm [Earley, 1970]. The parser designed

by Might et al. [2011] was intended for programming languages, but it is also capable of

handling arbitrary CFGs, so it can be used to parse natural language.

CHAPTER 2. BACKGROUND AND RELATED WORK 9

CYK The CYK parsing algorithm is the most popular choice for NLP [Jurafsky and Mar-

tin, 2009]. It is bottom up, allowing capture of partial parses even when a full parse fails.

The bottom up technique also allows the parser to cleanly handle the extra lexical informa-

tion attached to the internal grammar symbols common to performant parsers. It is used

by both the Collins [1999], and the Charniak [1997] parsing implementations. One disad-

vantage to the traditional CYK algorithm is it must have a grammar in Chomsky Normal

Form to parse. This does not add any computational complexity, just a more complicated

implementation. The complexity of the algorithm is Θ(n3) where n is the number of words

in the input sentence.

Earley The Earley parser is a left-to-right parser that proceeds in a top down fashion. Un-

like the CYK parser, the Earley parser cannot give a partial parse tree for a failed parse, and

some of its major advantages do not apply in the NLP context. It has linear complexity on

certain classes of grammars common in programming languages, but if the input grammar

falls outside this class, the algorithm still works, with a worst case complexity of O(n3).

While the CYK algorithm only worked on grammars in Chomsky Normal Form, the Earley

algorithm will accept any grammar.

Derivative Parser The parser presented by Might et al. [2011] works on arbitrary CFGs

like the Earley parser, but instead of explicitly traversing the rules in the grammar, it uses

the Brzozowski derivative to transform the grammar until there are no more tokens left in

the input. It then reconstructs a parse from the derivation of the empty string from the

start symbol of the final grammar. Unlike the Earley parser and CYK, the derivative parser

has never been applied to natural language. Like the Earley parser, the derivative parser

is a left-to-right, top down algorithm with a worst case of O(n3) [Adams and Hollenbeck,

2016].

CHAPTER 2. BACKGROUND AND RELATED WORK 10

2.2.2 Lexical Parsing

Lexical parsing allows a natural language parser to detect the difference between phrases

like house fly and birds fly. They do this by associating a word and a part of speech tag

with every internal symbol (e.g. noun phrases NP, verb phrases VP, etc.) in the grammar

[Charniak, 1997]. This potentially makes the grammar very large, but in practice the whole

expanded grammar does not need to be considered. This optimization is especially obvious

in the context of CYK. The inclusion of lexical information pushed the accuracy of state-

of-the-art parsers at the time [Charniak, 1997, 2000; Collins, 1999]. A full discussion of

lexical parsing is given in Chapter 4.

2.2.3 Collins Model

One of the most influential models for parsing natural language is the [Collins, 1999]

model. The heart of the Collins parsing model is the types of productions it considers.

Every rule expands to a head non-terminal and any number of right and left non-terminals.

P → L1 . . .Ln H R1 . . .Rm

This system means that every possible grammar rule has a defined probability, resulting in

a problematic infinite grammar. Implementations of the Collins model employ a system of

pruning to ensure they find a parse tree in reasonable time [Bikel, 2004]. A full discussion

of the Collins parsing model is given in Chapter 5.

Chapter 3

Derivative Parsing with Probabilities

The parser introduced by Might et al. [2011] works with a richer set of operators than a

parser for natural language grammars. First we describe a variant of the original algorithm

for this simpler context, and then we extend that algorithm to probabilistic parsing.

3.1 Derivatives of CFGs

In this section we describe a formally identical system as Might et al. [2011]. The differ-

ences are due to the fact that the procedure for producing a derived grammar with respect

to some symbol is simpler in the NLP context. When constructing a parser for a program-

ming language it is often convenient to have operators like the Kleene star and reduction.

Since the grammars of NLP are not built by hand and do not need to be understandable

by humans, we can ignore all constructs except for concatenation and union. This does

not change the set of representable languages, and greatly simplifies the construction of

a grammar. Concatenation is represented as usual. Adjacent symbols in productions are

concatenated. We encode union by denoting several rules for the same non-terminal, for

example the grammar may contain both of the following rules: S→ NP VP and S→ VP,

indicating that a sentence could be a noun phrase followed by a verb phrase, or just a

standalone verb phrase.

11

CHAPTER 3. DERIVATIVE PARSING WITH PROBABILITIES 12

In this simpler model taking the derivative of a single production in a grammar only

involves the rule for concatenation. Taking a derivative of a concatenation was the most

complicated of the cases for regular languages, and it is the most complicated for context

free languages as well. In order to do it correctly it is necessary to know if symbols are

nullable (i.e. can derive the empty string). The rule for a single concatenation is

Dc(A B) = Dc[A] B ∪ δ(A) Dc[B]

Recall that δ is the nullability operator, and is either equal to the empty set or the set

containing just the empty string ε. The rule for concatenation cannot be directly applied

to a production in a grammar. In order to do that we first need to define the derivative for

single symbols in the grammar

• Dc(c) = ε

• Dc(c
′) = ∅ for c 6= c′

• Dc(A) = Dc[A]

Derivatives of a Production Now the rule for the right hand side of a production can be

defined. In regular expressions the derivative of a concatenation produced a union. In the

context of CFGs this means the derivative can potentially result in more than one production

if the first symbol is nullable. Dc(P → A B) will always include Dc[P] → Dc[A] B, but if

A is nullable, then it also includes Dc[P]→ Dc[B].

This can be generalized to productions with any number of symbols on the right hand

side as follows. Consider a single rule from a CFG

P → N0 . . .Nk S α

where all Ni are nullable, S is some non-nullable symbol (a terminal or a non-terminal),

and α is any sequence of symbols. Taking the derivative of that production with respect to

CHAPTER 3. DERIVATIVE PARSING WITH PROBABILITIES 13

some character c only requires the rule for concatenation, and will produce the following

set of new rules

Dc[P] → Dc[N0] N1 . . .Nk S α

Dc[P] → Dc[N1] N2 . . .Nk S α

...

Dc[P] → Dc[Nk]S α

Dc[P] → Dc(S)α

Every possible nullable prefix, including the empty prefix, is potentially skipped, re-

sulting in k + 2 derived productions. Algorithm 1 describes how to find the derivative of a

single rule in a grammar, but which rules need to be derived?

Algorithm 1 Derivative of a Production
Require: a token c, and a production P→ e0 . . . en

1: result← empty list
2: add Dc[P]→ Dc(e0) e1 . . . en to result
3: i← 0
4: while i ≤ n and NULLABLE(ei) do
5: add Dc[P]→ Dc(ei) ei+1 . . . en to result
6: i← i+ 1
7: end while

Derivatives of CFGs To find all the rules needed for the derived grammar we start by

finding the production of the start non-terminal. We now need rules for all non-terminals

produced by these first rules in the new grammar. We just repeat the procedure for all rules

for some non-terminal until there are non-terminals left. If we need rules for a non-terminal

that is in the original grammar, then we can just copy those rules into the new grammar. In

the example above this would happen for all the non-terminals in α.

Once we have all the rules for the new grammar some of them can be removed. Con-

sider the case where a non-terminal A has a single production

A→ ε

CHAPTER 3. DERIVATIVE PARSING WITH PROBABILITIES 14

Taking the derivative of this production yields no new productions, so Dc[A] can never be

expanded because there are no productions with Dc[A] on the left-hand side. Since Dc[A]

can not be expanded, there are no parse trees with an A in them, so every rule that has a

Dc[A] in its expansion can also be removed from the grammar. Removing these rules may

result in other symbols with no valid expansions. Finding the fixed point of this removal

process ensures that all rules can be safely expanded, and the new grammar is complete.

This process is shown formally in Algorithm 2. Note that this algorithm only removes

productions that cannot be included in a parse. The process by which we chose what rules

to derive ensured we did not include unnecessary non-terminals in the grammar.

Algorithm 2 Removing Unneeded Productions
Require: productions

1: changed← true
2: while changed do
3: changed← false
4: names← PARENT(productions)
5: for p ∈ productions do
6: if EXPANSION(p) * names then
7: changed← true
8: REMOVE(p, productions)
9: end if

10: end for
11: end while

3.2 Constructing a Parse Tree

Here we present a different, but equivalent formalism to Might et al. [2011] for reconstruct-

ing the parse tree from a derived grammar. Each time a production is derived, a reference

to its parent production, and any nullable trees are stored along with it. All examples in

this section come from the grammar defined in Figure 3.1. Consider taking the derivative

of the production

DBirds[S]→ DBirds[NP] VP

CHAPTER 3. DERIVATIVE PARSING WITH PROBABILITIES 15

with respect to fly, then one of the resulting productions might be

DBirds,fly[S]→ Dfly[VP]

It would have a reference to the nullable path

DBirds[NP]→ DBirds[N]→ ε

and a back-pointer to the production that produced it. By the definition of the derivative,

the production DBirds,fly[S] → Dfly[VP] is created because DBirds[NP] is nullable. In or-

der to correctly reconstruct a parse tree, the path by which DBirds[NP] was nullable must

be remembered along with the back-pointer. Storing these two references with each de-

rived production allows a parse tree to be reconstructed from a nullable path in a derived

grammar.

The algorithm to build the final parse tree from a nullable path is simple. Given a tree

of productions (the nullable path), replace each production with the production stored in

its back-pointer until the root of the tree is not a derived production. To replace a derived

production with its back-pointer when a nullable path was used to create the production,

the nullable path must be inserted into the resulting tree. Consider the Birds fly example

above. Simply replacing DBirds,fly[S] → Dfly[VP] with DBirds[S] → DBirds[NP] VP will

not produce a tree that matches all the symbols in the expansion to child productions. The

nullable path for DBirds[NP] needs to be added as the first child of the tree. This makes all

of the symbols in the tree match up. The whole process is shown generally in Algorithm 3.

As an example consider the sentence Birds fly parsed with the grammar shown in Figure

3.1. The initial nullable path from the start symbol of the grammar would be

CHAPTER 3. DERIVATIVE PARSING WITH PROBABILITIES 16

DBirds,fly[S]

Dfly[VP]

Dfly[V]

ε

Stepping back once would require the insertion of the nullable path for the NP dominating

Birds, and would produce the tree

DBirds[S]

VP

V

fly

DBirds[NP]

DBirds[N]

ε

Finally the full parse tree would be constructed by stepping back a second time

S

VP

V

fly

NP

N

Birds

S → NP VP
NP → N
VP → V
N → Birds
V → fly

(a) The original grammar

DBirds,fly[S] → Dfly[VP]
Dfly[VP] → Dfly[V]
Dfly[V] → ε

(b) The fully derived grammar

Figure 3.1: An example grammar for the sentence Birds fly.

CHAPTER 3. DERIVATIVE PARSING WITH PROBABILITIES 17

Algorithm 3 Building a Parse Tree
Require: root

1: function STEPBACK(subtree)
2: if subtree is a derived production then
3: children← subtree.nullPaths
4: for all child in subtree.children do
5: add STEPBACK(child) to children
6: end for
7: return TREE(subtree.parent, children)
8: else
9: return subtree

10: end if
11: end function
12: while root is a derived production do
13: root← STEPBACK(root)
14: end while

3.3 Probabilities of Derived Productions

The probability of a derived production is the probability of its parent, times the probability

of any nullable paths used in its creation. If the probability of DBirds[S]→ DBirds[NP] VP

was 0.5, and the probability of the path DBirds[NP] → DBirds[N] → ε was 0.1, then the

probability of the derived production DBirds,fly[S]→ Dfly[VP] would be 0.5 · 0.1 = 0.05.

Since the final tree is built by replacing productions with their back-pointers, and all

nullable paths, the probability of the tree does not change when replacing productions with

their back-pointers. The probability of the nullable path in the derived grammar must be

equal to the probability of the fully expanded parse tree. This is much simpler than how

probabilities are handled by the stochastic Earley parser of Stolcke [1994].

3.4 Nullable Paths as Dijkstra’s Algorithm

Final piece of the DERP-P is the nullable path algorithm. We do not want any nullable path

as in Might et al. [2011], but the most probable path, according to the PCFG. Recall that

a PCFG associates a probability with every rule. The probability of parse tree for such a

CHAPTER 3. DERIVATIVE PARSING WITH PROBABILITIES 18

grammar is the product of the probabilities of all the rules present in the parse tree.

Finding a nullable path through a PCFG is equivalent to an execution of Dijkstra’s

algorithm on a hypergraph. A PCFG can be equivalently encoded into a graph where the

nodes are the symbols in the grammar, and the edges are the productions. This encoding

makes the application of Dijkstra’s algorithm more clear without changing the structure of

the grammar. Here we choose to make the arrows on the edges point the opposite direction

they do in the productions of the grammar because we will want to find a route from a

terminal to a symbol. Considering paths flowing from terminals to the root of a parse tree

is the bottom up view point, instead of the top down method grammar productions use to

show how to build strings in the language. This encoding is a type of hypergraph where

every edge has a list of origin nodes, and a single destination node. Consider the following

PCFG

D → C[7] |B C[1]

C → A[8] |A B[1]

B → A[5]

A → ε[1]

The numbers in brackets at the end of every production represent a score1. This grammar

can be equivalently expressed by this hypergraph.

? A

B

C

D

1

5
1

1

9

6

1Here we consider a more general case of scores that get added. The probabilities of productions must
be multiplied, so the weights will actually be the log probabilities. This also ensures very small probability
paths do not suffer from floating point error.

CHAPTER 3. DERIVATIVE PARSING WITH PROBABILITIES 19

Every symbol in the grammar becomes a node in the hypergraph, and every production

becomes a hyperedge. The scores of the productions are the weights of the hyperedges.

The graph contains all the information of the original PCFG; it is just a different way of

representing the grammar.

For the purposes of finding a path that can later become a parse tree we need to define a

path as a tree of nodes. In order to traverse an edge you must be at all of the origin nodes.

This means that the distance to a node accessed by a hyperedge is the weight of that edge

plus the sum of the weights of the origin nodes. This differs from the paths presented by

Gallo et al. [1993] which only require one of the origin nodes to be occupied.

Dijkstra’s algorithm traditionally only works on graphs with all non-negative edge

weights. Since the weights of the edges in our hypergraphs are log probabilities they will

all be in the range (−∞, 0], and we want to find the longest path, not the shortest one. Mul-

tiplying all the weights by -1 will not only satisfy the non-negative constraint of Dijkstra’s

algorithm, it will also make the path with the lowest weight be the path with the greatest

probability. This change allows us to use the shortest path algorithm to find the highest

probability path through the grammar.

The correctness of the shortest path algorithm relies on the distance to each node being

either correct or an overestimate. The fact that the distance to a vertex across a hyperedge is

the sum of the distances to every origin vertex means that weight of the destination vertex

if the path includes that edge will always be greater than or equal to the distance to any

one of the origin vertices. This means that while at least one of the origin vertices of an

edge is not marked as completed, there is no need to consider that edge when updating

the distance estimates to adjacent nodes. The update step of the shortest path algorithm

then only needs to consider edges where all the other origin vertices are marked done. The

shortest path algorithm is stated formally in Algorithm 4. When the algorithm terminates,

all the information needed to construct shortest paths through the graph is stored in the

parent array. Using this information, a tree of productions representing a path through

CHAPTER 3. DERIVATIVE PARSING WITH PROBABILITIES 20

the hypergraph can be produced. The process by which such a tree can be built is shown in

Algorithm 5. It recursively builds a path by constructing a tree based on the contents of the

parent array.

Algorithm 4 Dijkstra’s algorithm on a hypergraph
Require: graph, a set of origin nodes, a destination node
Ensure: parent gives shortest paths, distance gives shortest total weight

1: function TRAVERSE(edge)
2: os← edge.origins
3: d← edge.destination
4: distance← WEIGHT(edge) +

∑
os distance

5: if distance[d] > distance then
6: distance[d]← distance
7: parent[d]← os
8: end if
9: end function

10: for all node in nodes do
11: distance[node]←∞
12: parent[node]← ∅
13: end for
14: for all node in origins do
15: distance[node]← 0
16: end for
17: fringe← origins
18: done← ∅
19: for all edge in edges s.t. ORIGIN(e) is empty do
20: TRAVERSE(edge)
21: ADD(edge.destination, fringe)
22: end for
23: while fringe is not empty do
24: best← node in fringe with min distance
25: ADD(best, done)
26: for all edge from best s.t. origins in done do
27: TRAVERSE(edge)
28: ADD(edge.destination, fringe)
29: end for
30: end while

An example of the execution of the shortest path algorithm on the PCFG given above

is shown in Figure 3.2.

CHAPTER 3. DERIVATIVE PARSING WITH PROBABILITIES 21

? A

B

C

D

1

5

1

9

6

[0,?] [1,?]

[6,A]

[10,A]

[? ,?]

1

(a) The state of the graph after ε and A have been processed, but B, C,
and D have not.

? A

B

C

D

1

5

1

9

6

[0,?] [1,?]

[6,A]

[8,AB]

[14,C]

1

(b) The state of the graph after the algorithm is completed.

D

C

B

A

ε

A

ε

(c) The shortest path
from ε to D.

Figure 3.2: An example execution of Dijkstra’s algorithm on the example PCFG of Section
3.4. The solid nodes have been marked done, while the dashed nodes have not. The current
parent and path cost are shown beneath every vertex.

CHAPTER 3. DERIVATIVE PARSING WITH PROBABILITIES 22

Algorithm 5 Building a Null Tree
Require: an array of cumulative distances for each node, an array of parent backpointers

for each node
1: function BUILDTREE(root)
2: if parent[root] is ∅ then
3: return root
4: else
5: children← []
6: for all child in parent[root] do
7: add BUILDTREE(child) to children
8: end for
9: return TREE(root, children)

10: end if
11: end function

3.5 Probabilistic Parsing with Derivatives

Section 3.1 showed how to take a derivative of a CFG, assuming the existence of an algo-

rithm for checking the nullability of a grammar symbol. Taking the derivative with respect

to every word in an input sentence will give a grammar that contains the empty string if and

only if that sentence was in the language. Section 3.2 showed how including back pointers

in the derived productions allowed us to transform a path to null in the final grammar back

into a parse tree containing only symbols in the input grammar. Section 3.4 showed how

the most likely path to null can be found by executing Dijkstra’s algorithm on the PCFG.

These pieces give us the tools needed to define the derivative parser for PCFG (DERP-P).

The paths to null effectively enumerate all possible parse trees, and choose the argmax. The

algorithm has the same worst case bound as CYK [Adams and Hollenbeck, 2016], and does

not need the grammar to be transformed to Chomsky Normal Form. It parses left-to-right

in a very similar way as the Earley parser, but it has clear intermediate states (the grammar)

that can be saved for later reuse on a similar sentence.

DERP-P algorithm differs from the Earley algorithm and CYK principally in its use of

intermediate states. For every word in the input sentence, the algorithm produces a new

grammar that captures incremental structure of the parse. An intermediate grammar must

CHAPTER 3. DERIVATIVE PARSING WITH PROBABILITIES 23

be able to parse the remainder of any sentence because information about the remainder of

the sentence is not available. For this reason the parser has to do more work than a CYK

parser because it must keep track of partially formed structures, even when parsing the last

word in a sentence. While the parser does have to do more work, the complexity of the

algorithm is the same, and the intermediate grammars can be cached. A cached grammar

can be reused on a sentence starting with the same sequence of words in the future. The

final grammar created by the parsing the sentence Birds fly reused to parse the sentence

Birds fly south, or Birds fly daily. Figure 1.1 suggests that such reuse will happen often.

This is a classic example of the time-memory trade off that has not been explored for

parsing natural language.

Chapter 4

Adapting to Lexicalized Parsing

The algorithm described above works in general on PCFGs. When parsing natural language

it is very common to parse a lexicalized grammar (introduced in section 4.1) instead of

a grammar containing only the bare non-terminal symbols. The lexicalized grammar is

much larger than the original one, and it is not practical or necessary to consider every

lexical symbol in its own right.

4.1 The Naı̈ve Approach

Lexicalizing a grammar takes every non-terminal symbol and associates a word and a part

of speech tag with it. Process of lexicalization for a simple rule S→ NP VP would produce

S〈eats,V BZ〉 → NP〈he,PRP 〉VP〈eats,V BZ〉

S〈fly,V BP 〉 → NP〈birds,NNS〉VP〈fly,V BP 〉

...

where VBZ, PRP, etc. are parts-of-speech tags from the Penn Treebank data-set [Marcus

et al., 1993].

It is possible to consider each of pair of internal symbol and lexical information a

new internal symbol, and parse on that grammar. Unfortunately this leads to catastrophic

24

CHAPTER 4. ADAPTING TO LEXICALIZED PARSING 25

grammar sizes, which is a factor in the running time of a parser. Not considering func-

tion tags, the Penn Treebank has 26 internal symbols, and 36 part of speech tags [San-

torini, 1990]. If we assume a small dictionary of only 10,000 words, there would be

26 · 36 · 10000 = 9.36 × 106 internal symbols in a lexical grammar. This is clearly too

many to allow for efficient parsing because the size of the grammar dominates parsing time

[Klein and Manning, 2001]. A different approach is required.

4.2 Folding the Grammar

The solution to the problem of the size of the grammar is to do parsing on the unlexicalized

grammar, and only using the lexical information when it is necessary to compute a score.

This is the same approach taken by Collins [1999], but here it is manifested as what we call

a fold of the lexical grammar.

The structure of the folded hypergraph is the same as that of the unlexicalized hyper-

graph, but every edge includes functions to produce lexical information when required. We

change only the definitions of the edges and the weighting function. This small change

allows parsing the full lexicalized PCFG. Formally, an edge changes to include a func-

tion, extract, from lists of lexical information to a single piece of lexical information,

extract : [Info]→ Info. This function gives the lexical information of the destination

vertex given the lexical information of the source vertices. This function is extracting the

lexical information of the destination vertex from the lexical information of the source ver-

tices. As an example, the edge S〈fly,V BP 〉 → NP〈birds,NNS〉 VP〈fly,V BP 〉 would be folded

(along with many other edges) into the edge S → NP VP with the extraction function

ensuring extract(〈birds,NNS〉, 〈fly, V BP 〉) 7→ 〈fly, V BP 〉1.

This defines a folded grammar, but does not define scores for the folded edges. The

weighting function from the original definition of a hypergraph cannot assign the correct

1The extraction function in this case is the head percolation function defined by Collins [1999].

CHAPTER 4. ADAPTING TO LEXICALIZED PARSING 26

scores because it may need to assign a different score based on the lexical information of

the source nodes. To fix this issue, the scoring function not only requires an edge to score,

but also the lexical information of the source nodes. These changes to the definition of a

hypergraph still allow the operations required to parse with derivatives and greatly reduce

the size of the grammar. In this new formalism we are allowed to consider only the lexical

information of the words and part of speech tags we have seen in the sentence instead of

the entire English language.

4.2.1 Folded Dijkstra’s Algorithm

In order to produce a parse tree, we must be able to find the shortest path from ε to the start

non-terminal in a derived grammar. We have seen in Section 3.4 that this is possible on

hypergraphs, which allowed PCFG parsing. However, there are some notable differences

when operating on a folded graph.

The back pointers become more complicated. Instead of just keeping a reference to

the origins of the best edge into every vertex, we also need to keep track of the lexical

information for each origin. There are also a lot of unfolded nodes, and we need to keep

track of the distance and parents for all of them. This is not practical, but since we know

what the initial values of the distance and parent should be, we don’t need to store them

explicitly. Instead every time we try to get the back pointer information of a vertex we

first check if it exists, and if not then we substitute the default values. In other words,

we dynamically materialize back-pointer information on an as-needed basis, and only for

nodes that actually exist.

This provides the same advantages seen in bottom up parsers, which never store the

lexical information for words that do not appear in the sentence. In our case, the only source

of lexical information are the words that have already been consumed. The only lexical

information a node could possibly have are words that appeared earlier in the sentence. This

stops the explosion of grammar symbols that kills the performance of parsers on lexicalized

CHAPTER 4. ADAPTING TO LEXICALIZED PARSING 27

grammars.

The other major change from Algorithm 4 is how an edge updates the distance estimate

to its destination. Since there is a function that determines the weight of the edge based

on the lexical information of the source vertices, we need to consider all combinations of

lexical information of the source vertices. For every combination there is also the possibil-

ity that the lexical information produced by the edge will be different. Inside the function

that handles edges there is a loop over the Cartesian product of the lexical information of

the source vertices. This ensures that all possible combinations are considered during the

update. This algorithm is stated formally in Algorithm 6.

Algorithm 6 Folded Dijkstra Update
1: function TRAVERSE(edge)
2: os← edge.origins
3: d← edge.destination
4: sum←

∑
os distance

5: for all info in CARTESIAN(os.info) do
6: distance← WEIGHT(edge, info) + sum
7: dInfo← EXTRACT(edge, info)
8: if distance[d, dInfo] > distance then
9: distance[d, dInfo]← distance

10: parent[d, dInfo]← os
11: end if
12: end for
13: end function

An example of the execution of this algorithm on the input sentence Eat sushi with tuna

is given in Appendix A.

4.2.2 Changes in Representation

This section summarizes all the changes needed to parse a lexicalized PCFG. Recall from

the previous chapter that every rule in the grammar needed to have: 1. A parent non-

terminal, 2. A list of symbols the parent expanded to, 3. A score. In addition to the previous

elements, the derived rules also needed to have the back-pointers required to compute a

CHAPTER 4. ADAPTING TO LEXICALIZED PARSING 28

parse tree. This back-pointer information is: 1. A pointer to the previous rule, 2. A list of

nullable paths used when creating the rule.

There were too many lexical rules to store them this way, so we presented a system

in which we could essentially produce lexical rules on demand. These folded rules are

represented by: 1. A parent non-terminal, 2. A list of symbols the parent expands to, 3. An

extraction function [Info] → Info, 4. A scoring function [Info] → R. In addition to

the previous elements, the derived rules need more complex back pointers to ensure the

maximum probability parse tree is found. The back-pointer information is: 1. A pointer to

the previous rule, 2. A map from lexical information to a corresponding nullable path and

score Info → (Path,R). This information can be used to construct the possible lexical

rules on demand. Only the lexical information seen in the previous words in the sentence

is saved, greatly reducing the memory required to do lexical parsing.

Chapter 5

Replicating the Collins Model

The algorithm presented in the previous chapter allows arbitrary lexical information to be

added to the grammar symbols, and requires two functions, weight(edge, [info]),

and extract(edge, [info]). In order to capture the complexity of the Collins

model (described in Section 5.1 below), the added lexical information cannot simply be

the head word and part of speech tag for that symbol. There is still no way of writing down

the grammar implied by Collins’ model. Every possible production has a score, so the

grammar would be infinitely large.

5.1 The Collins Parsing Model

Unlike the standard PCFG model, which associates a single probability with each rule,

Collins’ models for parsing introduce additional independence assumptions that allow the

learned grammar to generalize better to unseen grammatical constructions. The heart of the

Collins [1999] parsing model is the types of productions it considers. Every rule expands

to a head non-terminal and any number of right and left non-terminals. Every terminal is

directly produced by its part of speech tag.

P → L1 . . .Ln H R1 . . .Rm

T → word

29

CHAPTER 5. REPLICATING THE COLLINS MODEL 30

This system means that every possible grammar rule has a defined probability, resulting in

a problematic infinite grammar. Implementations of the Collins model cannot search over

the entire infinite space of possible parse trees, and employ a system of pruning to ensure

they find a parse tree in reasonable time [Bikel, 2004].

Here we only consider only Collins’ Model 1, which includes some specialized lexical

information as well as the conditional probabilities of head, left, and right, non-terminals.

The base Collins model assumes the probability of a rule is equivalent to the probability of

producing the head non-terminal

P(H|P, h)

times the probability of producing the left non-terminals

n+1∏
i=1

P(Lili|P,H, h)

times the probability of producing the right non-terminals

m+1∏
i=1

P(Riri|P,H, h)

where h is the lexical information of the head child, and li and ri are the lexical information

of the ith left and right children respectively.

Collins’ Model 1 also includes a distance function that encodes whether the tag being

generated is adjacent to the head symbol, and if there is a verb dominated by the gener-

ated symbols. This extra information allows the model to learn right branching structures

and modifiers on the previous verb, which both increase the accuracy on the Penn treebank

[Collins, 1999]. The addition of the distance function changes the left and right probabili-

ties to

P(Lili|P,H, h, distancel(i− 1))

The inclusion of the distance and other features increase the performance of the Collins

CHAPTER 5. REPLICATING THE COLLINS MODEL 31

parser, but for simplicity, we omit them in this work. Such features could be easily added

by changing the definitions given below.

5.2 Encoding Features in Lexical Information

The CYK based implementation of the Collins model relied on the fact that CYK is a

bottom up parsing algorithm to build rules as it needed them. In this way, the algorithm

did not need to consider the entire infinite set of rules available. For a derivative parser to

work we need to be able to write down the entire grammar so that we can take a derivative.

The strategy for handling lexical information described in the previous chapter provides a

solution to this problem.

There is no restriction on the type of the lexical information. Instead of a word tag pair,

we encode all the information the Collins model needs to calculate probabilities into the

lexical information of a rule. We are only ever interested in the score of a nullable rule. As

long as the lexical information of every rule deriving ε is known, scores can be computed.

Now, instead of lexical information, every non-terminal symbol can have arbitrary in-

formation associated with it. To reflect its more general nature we will refer to this infor-

mation as the non-terminal’s tag, instead of its lexical information.

5.3 An Efficient Encoding

The solution to this problem of the infinite grammar is to not use a grammar where con-

stituents produce other constituents. Since every constituent has a probability of producing

every other constituent those symbols can also be included in the tags on the grammar sym-

bols. Instead we will have only two grammar symbols, U and F, for unfinished and finished

constituents. When every word in the input sentence has been parsed, the path from ε to F

will be a rule for a complete sentence if an S is the constituent in its tag. Searching for such

a node is trivial compared to the cost of parsing, and now there are only two non-terminal

CHAPTER 5. REPLICATING THE COLLINS MODEL 32

Production score extract

U→ F〈a〉U〈b〉 P(a, Left|b) b

U→ U〈a〉 F〈b〉 P(b, Right|a) a

UP → F〈a〉 P(a|P, a) (P, a)

F→ U〈a〉 P(STOP|a) a

F→ * 1 generated

Table 5.1: The rules for the finished/unfinished realization of Collins’ Model 1

symbols to consider when taking a derivative. Each of those symbols will have many tags

associated with them at one time, but the total number of items to keep track of is the same

as in Collins original model.

5.3.1 The Grammar

The full grammar for the finished/unfinished realization of the Collins model encodes the

ways constituents can combine to form new constituents in exactly the same way as de-

scribed in by Collins [1999]. The tags stored on each node are the tuple of (the symbol for

the node, the symbol of the head child, the head word, and the head tag). This is the same

set of information associated with the productions stored in the CYK chart in the original

implementation of Collins’ Model 1 [Collins, 1999].

Table 5.1 defines the rules in this realization of Collins’ Model 1. Each type of rule

is described briefly below. If we think of the rules going bottom up instead of top down,

there is an obvious one-to-one mapping to the CYK implementation of Collins’ Model 1

[Collins, 1999].

Join Rules The first two rules, U→ F〈a〉U〈b〉, and U→ U〈a〉 F〈b〉, join a finished produc-

tion onto an unfinished production on either the left or the right. The scores of these rules

are one piece of the product defining the probability of the left or right constituents of a

CHAPTER 5. REPLICATING THE COLLINS MODEL 33

Collins production.

Head Rules There is a distinct rule of the form UP → F〈a〉 for every internal grammar

symbol P . This rule builds a new unfinished constituent that can be joined with other

finished constituents to make a new Collins production. The tag for this rule specifies that

F〈a〉 is the head of UP , and P is the constituent. The probability of this rule is the same as

Collins’ head probability.

Finish Rule The finishing rule F→ U〈a〉 adds the STOP probabilities to to an unfinished

rule. The tag is exactly the same as U〈a〉.

POS Rule The last rule constructs the initial part of speech tag from a word in the sen-

tence. This rule uses a new grammar symbol, ∗. This symbol represents any token, its

derivative with respect to anything is ε. The probability of a part-of-speech rule is 1 as in

Collins [1999]. The tag associated with the F non-terminal is generated based on the token

seen in the input. In this work we assume the part of speech tags are known, but you could

also use the same trick here as with the internal nodes, duplicating the rule for every part

of speech tag that should be generated. The tag extracted for the last rule just contains the

part of speech tag F represents, and the word that was seen in the input.

5.3.2 Fixing the Parse Tree

The parse trees resulting from this grammar are not the parse trees of the Penn Treebank.

Using the tags 〈 parent, head, tag, word 〉, and thre grammar in Table 5.1, the tree for the

sentence Birds fly would be

CHAPTER 5. REPLICATING THE COLLINS MODEL 34

F〈S,V P,V B,fly〉

U〈S,V P,V B,fly〉

U〈S,V P,V B,fly〉

F〈V P,V B,V B,fly〉

U〈V P,V B,V B,fly〉

F〈V B,V B,V B,fly〉

*

F〈NP,NNS,NNS,Birds〉

U〈NP,NNS,NNS,Birds〉

F〈NNS,NNS,NNS,Birds〉

*

To change this tree into the correct parse tree we perform two bottom up tree transfor-

mations. The first replaces all the finished symbols F with the constituent they represent.

The second transform removes all the unfinished symbols U.

To replace a finished symbol F〈P,H,t,w〉 we replace part-of-speech subtrees

F〈P,H,t,w〉

*

with

P〈t,w〉

w

and we replace internal subtrees

F〈P,H,t,w〉

. . . α . . .

with

P〈t,w〉

. . . α . . .

CHAPTER 5. REPLICATING THE COLLINS MODEL 35

This transformation results in the following tree for Birds fly.

S〈V B,fly〉

U〈S,V P,V B,fly〉

U〈S,V P,V B,fly〉

VP〈V B,fly〉

U〈V P,V B,V B,fly〉

VB〈V B,fly〉

fly

NP〈NNS,Birds〉

U〈NP,NNS,NNS,Birds〉

NNS〈NNS,Birds〉

Birds

To remove an unfinished symbol U〈P,H,t,w〉 we the U node with its children, so the tree

A

E

. . . ζ . . .

U〈P,H,t,w〉

D

. . . γ . . .

C

. . . β . . .

B

. . . α . . .

would become

A

E

. . . ζ . . .

D

. . . γ . . .

C

. . . β . . .

B

. . . α . . .

This transform results in the correct parse tree for the sentence Birds fly.

S〈V B,fly〉

VP〈V B,fly〉

VB〈V B,fly〉

fly

NP〈NNS,Birds〉

NNS〈NNS,Birds〉

Birds

CHAPTER 5. REPLICATING THE COLLINS MODEL 36

5.3.3 Results

This encodes the Collins parsing model into a folded grammar over which the derivative is

defined. It does this not by copying the grammar of the Collins model, but by encoding the

way the symbols are combined in the CYK implementation of the model. This successfully

encodes an infinite grammar into a small number of rules, and allows for many of the same

optimizations as the original implementation to make it run in reasonable time.

Chapter 6

Conclusions

We have defined a new parsing algorithm for natural language called DERP-P (the Deriva-

tive Parser with Probabilities). This algorithm generalizes derivative parsing to include

probabilistic grammars.

The algorithm uses derivatives to produce a new grammar for each word in an input

sentence. When all of the words have been seen, a final execution of Dijkstra’s algorithm

results in the highest probability nullable path through the grammar. This path is then

expanded into the most probable parse tree by following back-pointers saved when taking

derivatives. This results in a left to right parser that has easily cacheable intermediate

states with the same complexity as popular algorithms used in NLP. A further optimization

allowed us to fold up a lexical grammar, ensuring efficient execution for complex parsing

models like Collins’ Model 1.

This new parsing algorithm is useful when parsing large data sets. It allows partial

parses to be saved and then reused on a future sentence that shares a prefix with any sen-

tence seen so far. This offers massive potential boosts in the time required to parse a large

number of sentences.

The algorithm does do more work than an implementation that is not cache aware. It

needs to save any place a future word could hook into the current parse tree, so there are

37

CHAPTER 6. CONCLUSIONS 38

fewer opportunities to do pruning during parsing. If a data-set is small, then this algorithm

could be slower than a traditional parsing algorithm.

Just because a data-set is small does not necessarily mean this algorithm does not have

benefits. If we have access to a cache that has been warmed up with many sentences seen

before, then loading from a pre-trained cache could also increase performance.

As the size of textual data becomes larger and larger, we need algorithms that can go

faster as they see more data. Parsing is such a crucial aspect of most NLP pipelines that

speeding up parsing can make a substantial contribution towards the goal of building text

understanding systems that function on web-scale data.

Bibliography

Adams, M. D. and Hollenbeck, C. (2016). On the Complexity and Performance of Parsing

with Derivatives. 37th annual ACM SIGPLAN conference on Programming Language

Design and Implementation.

Bikel, D. M. (2004). Intricacies of Collins’ Parsing Model. Computational Linguistics,

30(4):479–511.

Brzozowski, J. a. (1964). Derivatives of Regular Expressions. Journal of the ACM,

11(4):481–494.

Charniak, E. (1997). Statistical parsing with a context-free grammar and word statistics.

Proceedings of the 14th National Conference on Artificial Intelligence, (CS-95-28):598–

603.

Charniak, E. (2000). A Maximum-Entropy-Inspired Parser. 1st North American chapter of

the Association for Computational Linguistics conference (NAACL’ 2000), (c):132–139.

Collins, M. (1999). HEAD-DRIVEN STATISTICAL MODELS FOR NATURAL LAN-

GUAGE PARSING Michael Collins. PhD thesis.

Earley, J. (1970). An efficient context-free parsing algorithm. Communications of the ACM,

13(2):94–102.

Gallo, G., Longo, G., Pallottino, S., and Nguyen, S. (1993). Directed hypergraphs and

applications. Discrete Applied Mathematics, 42(2-3):177–201.

39

BIBLIOGRAPHY 40

Hopcroft, J. E., Motwani, R., and Ullman, J. D. (2001). Introduction to Automata Theory,

Languages, and Computation, 2Nd Edition. SIGACT News, 32(1):60–65.

Jurafsky, D. and Martin, J. H. (2009). Speech and Language Processing: An Introduc-

tion to Natural Language Processing, Computational Linguistics, and Speech Recogni-

tion. Speech and Language Processing An Introduction to Natural Language Processing

Computational Linguistics and Speech Recognition, 21:0–934.

Klein, D. and Manning, C. D. (2001). Parsing with Treebank Grammars: Empirical

Bounds, Theoretical Models, and the Structure of the Penn Treebank. In Proceedings of

the 39th Annual Meeting on Association for Computational Linguistics, ACL ’01, pages

338–345, Stroudsburg, PA, USA. Association for Computational Linguistics.

Marcus, M. P., Marcinkiewicz, M. A., and Santorini, B. (1993). Building a large annotated

corpus of English: The Penn Treebank. Computational linguistics, 19(2):313–330.

Might, M., Darais, D., and Spiewak, D. (2011). Parsing with Derivatives: A Functional

Pearl. pages 189–195.

Santorini, B. (1990). Part-of-speech tagging guidelines for the Penn Treebank Project (3rd

revision).

Shieber, S. M. (1985). Evidence against the context-freeness of natural language. Springer.

Stolcke, A. (1994). An Efficient Probabilistic Context-Free Parsing Algorithm that Com-

putes Prefix Probabilities. Computational Linguistics, 21(2):165–201.

Appendix A

Folded Example

In this appendix we will see an example of parsing using a folded grammar. Consider the

sentence

Eat sushi with tuna.

Suppose we want to parse this sentence using the following grammar:

S〈h〉 → VP〈h〉

VP〈h〉 → VT〈h〉NP〈w1〉

VP〈h〉 → VT〈h〉NP〈w1〉 PP〈w2〉

NP〈h〉 → N〈h〉

NP〈h〉 → N〈h〉 PP〈w1〉

PP〈h〉 → P〈h〉NP〈w1〉

N〈sushi〉 → sushi

N〈tuna〉 → tuna

N〈gusto〉 → gusto

VT〈eat〉 → eat

P〈with〉 → with

The extraction function is shown explicitly for each rule, and is equivalent to the Collins

head percolation function.

41

APPENDIX A. FOLDED EXAMPLE 42

We will not write the part of speech tag of the lexical information to save space. It is

assumed that tuna always has the POS tag N and eat always has the tag VT. We will use

the indices of the words in the sentence when referring to the in a derivative instead of the

words themselves to try to keep things from getting too out of hand. For example Deat[VT]

will be written D0[VT], and Dsushi,with[NP] will be written D12[NP].

Taking the derivative with respect to eat yields the following new rules (in addition to

all the rules in the original grammar)

D0[S〈h〉] → D0[VP〈h〉]

D0[VP〈h〉] → D0[VT〈h〉] NP〈w1〉

D0[VP〈h〉] → D0[VT〈h〉] NP〈w1〉 PP〈w2〉

D0[VT〈eat〉] → ε

Note the omission of rules such as P〈with〉 → with. The derivative of these rules pro-

duced the empty set because the token did not match, so they were removed from the

grammar. Deriving with respect to sushi yields

D01[S〈h〉] → D01[VP〈h〉]

D01[VP〈eat〉] → D1[NP〈w1〉]

D01[VP〈eat〉] → D1[NP〈w1〉] PP〈w2〉

D1[NP〈h〉] → D1[N〈h〉]

D1[NP〈h〉] → D1[N〈h〉] PP〈w1〉

D1[N〈sushi〉] → ε

Note the VP rules from the original grammar are not longer needed, and the D01[VP]

rules have had their lexical information forced to eat. Deriving with respect to with yields

APPENDIX A. FOLDED EXAMPLE 43

D012[S〈h〉] → D012[VP〈h〉]

D012[VP〈eat〉] → D12[NP〈w1〉]

D012[VP〈eat〉] → D12[NP〈w1〉] PP〈w2〉

D012[VP〈eat〉] → D2[PP〈w2〉]

D12[NP〈sushi〉] → D2[PP〈w1〉]

D2[PP〈h〉] → D2[P〈h〉] NP〈w1〉

D2[P〈with〉] → ε

Finally deriving with respect to tuna gives the final grammar

D0123[S〈h〉] → D0123[VP〈h〉]

D0123[VP〈eat〉] → D123[NP〈w1〉]

D0123[VP〈eat〉] → D123[NP〈w1〉] PP〈w2〉

D0123[VP〈eat〉] → D23[PP〈w2〉]

D123[NP〈sushi〉] → D23[PP〈w1〉]

D23[PP〈h〉] → D3[NP〈w1〉]

D3[NP〈h〉] → D3[N〈h〉]

D3[NP〈h〉] → D3[N〈h〉] PP〈w1〉

D3[N〈tuna〉] → ε

The nullable from ε to D0123[S] that should have the highest score is

D0123[S〈eat〉]

D0123[VP〈eat〉]

D123[NP〈sushi〉]

D23[PP〈with〉]

D3[NP〈tuna〉]

D3[N〈tuna〉]

ε

APPENDIX A. FOLDED EXAMPLE 44

The following trees show the states of the back pointer replacing algorithm. The final tree

is the parse tree for the input Eat sushi with tuna.

D012[S〈eat〉]

D012[VP〈eat〉]

D12[NP〈sushi〉]

D2[PP〈with〉]

NP〈tuna〉

N〈tuna〉

tuna

D2[P〈with〉]

ε

D01[S〈eat〉]

D01[VP〈eat〉]

D1[NP〈sushi〉]

PP〈with〉

NP〈tuna〉

N〈tuna〉

tuna

P〈with〉

with

D1[N〈sushi〉]

ε

APPENDIX A. FOLDED EXAMPLE 45

D0[S〈eat〉]

D0[VP〈eat〉]

NP〈sushi〉

PP〈with〉

NP〈tuna〉

N〈tuna〉

tuna

P〈with〉

with

N〈sushi〉

sushi

D0[VT〈eat〉]

ε

S〈eat〉

VP〈eat〉

NP〈sushi〉

PP〈with〉

NP〈tuna〉

N〈tuna〉

tuna

P〈with〉

with

N〈sushi〉

sushi

VT〈eat〉

eat

Name of Candidate: Tobin Yehle

Birth date: May 16, 1993

Birth place: Salt Lake, Utah

Address: 2807 E. Sherwood Dr.
Salt Lake, UT 84108

	Introduction
	Background and Related Work
	Formal Languages and Computation
	Regular Languages
	Derivatives of Regular Languages
	Context Free Languages
	Parsing CFGs

	Parsing Natural Language
	Parsing Algorithms
	Lexical Parsing
	Collins Model

	Derivative Parsing with Probabilities
	Derivatives of CFGs
	Constructing a Parse Tree
	Probabilities of Derived Productions
	Nullable Paths as Dijkstra's Algorithm
	Probabilistic Parsing with Derivatives

	Adapting to Lexicalized Parsing
	The Naïve Approach
	Folding the Grammar
	Folded Dijkstra's Algorithm
	Changes in Representation

	Replicating the Collins Model
	The Collins Parsing Model
	Encoding Features in Lexical Information
	An Efficient Encoding
	The Grammar
	Fixing the Parse Tree
	Results

	Conclusions
	Folded Example

